Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Comput Electr Eng ; : 108479, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2243512

ABSTRACT

Recent studies have shown that computed tomography (CT) scan images can characterize COVID-19 disease in patients. Several deep learning (DL) methods have been proposed for diagnosis in the literature, including convolutional neural networks (CNN). But, with inefficient patient classification models, the number of 'False Negatives' can put lives at risk. The primary objective is to improve the model so that it does not reveal 'Covid' as 'Non-Covid'. This study uses Dense-CNN to categorize patients efficiently. A novel loss function based on cross-entropy has also been used to improve the CNN algorithm's convergence. The proposed model is built and tested on a recently published large dataset. Extensive study and comparison with well-known models reveal the effectiveness of the proposed method over known methods. The proposed model achieved a prediction accuracy of 93.78%, while false-negative is only 6.5%. This approach's significant advantage is accelerating the diagnosis and treatment of COVID-19.

2.
Artif Intell Med ; 134: 102431, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2082437

ABSTRACT

During the COVID-19 pandemic, the patient care delivery paradigm rapidly shifted to remote technological solutions. Rising rates of life expectancy of older people, and deaths due to chronic diseases (CDs) such as cancer, diabetes and respiratory disease pose many challenges to healthcare. While the feasibility of Remote Patient Monitoring (RPM) with a Smart Healthcare Monitoring (SHM) framework was somewhat questionable before the COVID-19 pandemic, it is now a proven commodity and is on its way to becoming ubiquitous. More health organizations are adopting RPM to enable CD management in the absence of individual monitoring. The current studies on SHM have reviewed the applications of IoT and/or Machine Learning (ML) in the domain, their architecture, security, privacy and other network related issues. However, no study has analyzed the AI and ubiquitous computing advances in SHM frameworks. The objective of this research is to identify and map key technical concepts in the SHM framework. In this context an interesting and meaningful classification of the research articles surveyed for this work is presented. The comprehensive and systematic review is based on the "Preferred Reporting Items for Systematic Review and Meta-Analysis" (PRISMA) approach. A total of 2540 papers were screened from leading research archives from 2016 to March 2021, and finally, 50 articles were selected for review. The major advantages, developments, distinctive architectural structure, components, technical challenges and possibilities in SHM are briefly discussed. A review of various recent cloud and fog computing based architectures, major ML implementation challenges, prospects and future trends is also presented. The survey primarily encourages the data driven predictive analytics aspects of healthcare and the development of ML models for health empowerment.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , Pandemics , Machine Learning , Delivery of Health Care
SELECTION OF CITATIONS
SEARCH DETAIL